

BADGER LABORATORIES & ENGINEERING INC.

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

THILMANY, LLC
No. 9&11 Boilers Emission Test
at

Kaukauna, WI May 27, 2010 P.O. No. 91382 OS

Prepared by:

BADGER LABORATORIES & ENGINEERING 501 West Bell Street Neenah, WI 54956

June 28, 2010

Bruce F. Lamers
Project Manager

Joffry M. Wagner

Jeffery M. Wagner Chief Chemist

WI DNR Certified Lab #445023150 WI Reg. Engineers (Corp.) #CE00601 WI DATCP Certified #205 (Bacteria-Water) Members
WI Environmental Labs; Am. Chemical Soc.;
T.A.P.P.I.; WI Food Processors Assn.;
Wisc. Paper Council

Thilmany, LLC - No. 9&11 Boilers Emission Tests

I. Introduction and Summary

Badger Laboratories & Engineering Co., Inc. (BL&E) was retained by Thilmany, LLC to determine the concentration of Particulate emissions in the exhaust from the No. nine and eleven boilers located at the plant in Kaukauna, WI. A set of multiclones and an electrostatic precipitator are used for emission control on the boilers.

The emission tests were conducted May 27, 2010 by Bruce Lamers and Matt Vissers of BL&E (phone No. 920-729-1100). The testing was performed to demonstrate compliance with the Wisconsin Department of Natural Resources (WDNR) particulate emission limitations of 0.30 pounds per million Btu. Mr. James Crawford and Ms. Michelle Farley, from the WDNR, were present to witness the testing on May 27, 2010. Testing was performed following U.S. EPA Methods. Mr. Tom Jayne (phone No. 920-766-8656) is the Thilmany, LLC facility contact. Summaries of the emission results are shown below. A more detailed breakdown of the results is shown in the Appendix.

No. 9/11 Boiler Emission Results 05/27/10

Test	Volumetric Flow Rate	Isokinetic	Particulate Emission		
Run	_dscfm	Ratio, %	<u>lb./hr.</u>	lb./MM Btu	
1	125,758	100.4	48.07	0.090	
2	132,005	98.8	40.73	0.076	
3	129,365	98.5	32.52	0.061	
Average of 3 Runs	129,043		40.44	0.08	
	Emission Calci	ulation		0.07*	
Limitation				0.30	

^{* &}lt;u>0.07</u> =0.090*((0.883+0.117)*4.35/21.192)+0.0685*((24-4.35)/24-(0.509/21.192))
Sootblowing occurred during run number one for a total of 52 minutes between the two boilers. There is a total of 261 minutes or 4.35 hours of Sootblowing per day. Calculation based on NR 439.07(8)(b)

			Nos. 9 and 11 Boilers Process and ESP Data			•	
		•	,				
-	9 Boiler	11 Boller		1st Field Electrical Readings	2nd Field Electrical Read	d ings <u>UPR-IT 3</u> JUPR-JT 3JUPR-YT 3882	UC-AT 3890 Stack
ack Test Run Times	9 boiler steam 9 boiler flow, multiclone dP.	b11-R 1342 b11-pdt 1050 11 boiler 11 boiler steam flow, multiclone MLBS /HR dP m.W C	Combined % Full Load steam flow, MLBS./HR	UPR-ET SUPR-ET SUPR-IT 387 UPR-IT 38	1 TR 2 Pri TR 2 Sec TR 2 Pri irk Volts Volts Current	TR 2 Sec TR 2 Pri TR 2 Current kW Spark Ampa Rate	Stack Opacity %
StartEnd_ 27/2010 8:45 5/27/2010 9	MLBS/HR IN W C	331.0 3.2	473.0 93.7%	213.4 32.8 80.1 0.408 15.5 62 229.9 34.8 86.4 0.443 18.0 63	1 263.2 39.1 138.3	0.659 27.8 56.9 0.737 33.1 41.5	3.77 2.69
7/2010 10:20 5/27/2010 1 7/2010 11:50 5/27/2010 1	1:27 142.8 1.9	347.7 3.3 . 332.7 3.2	490.6 97.1% 486.0 96.2%	237.8 35.5 94.3 0.493 20.2 62	9 270.6 39.7 145.3		2.99
AVERAG	E 146.1 2.1	_ 337 <u>.1</u> 3.3	483.2 _ 95.7%	227.0 34.4 86.9 0.45 17.9 62	.8 258.4 38.6 136.1	0.73 32.1 44.0	3.15